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The objective of this study is to understand the performance associated with using the 
aerocapture maneuver to slow high-mass systems from an Earth-approach trajectory into 
orbit around Mars. This work is done in conjunction with the Mars Entry Descent and 
Landing Systems Analysis (EDL-SA) task to explore candidate technologies necessary for 
development in order to land large-scale payloads on the surface of Mars. Among the 
technologies considered include hypersonic inflatable aerodynamic decelerators (HIADs) 
and rigid mid-lift to drag (L/D) aeroshells. Nominal aerocapture trajectories were developed 
for the mid-L/D aeroshell and two sizes of HIADs, and Monte Carlo analysis was completed 
to understand sensitivities to dispersions. Additionally, a study was completed in order to 
determine the size of the larger of the two HIADs which would maintain design constraints 
on peak heat rate and diameter. Results show that each of the three aeroshell designs studied 
is a viable option for landing high-mass payloads as none of the three exceed performance 
requirements.  

Nomenclature 
∆V =    change in velocity required post-aerocapture to achieve desired orbit 
Φ = bank angle 
ρ0 = reference atmospheric density 
ρest =   atmospheric density estimate 
ρmes =   measured atmospheric density 
CD =   drag coefficient 
CL =   lift coefficient 
D = drag acceleration 
Dmes = measured drag acceleration 
DREF = drag acceleration reference 
g =   gravitational acceleration 
Gd = drag acceleration gain 
Gh = altitude rate gain 
h = altitude 
h0 = reference altitude for density approximation 
hS = scale height for density approximation 

h  = altitude rate 

refh  = altitude rate reference 
Kρ = density multiplier 
K = filter gain 
m = mass 



 
 

American Institute of Aeronautics and Astronautics 
 
 

2 

Error! Bookmark not defined.Error! Bookmark not defined. q  =   dynamic pressure 
R =   radius 
S = reference area 
VI =   inertial velocity  
Vmiss =   difference between predicted and desired exit velocity 
Vr = relative velocity   

I. Introduction 
 
he Mars Entry, Descent, and Landing System Analysis (EDL-SA) project has been tasked with performing 

systems analysis to identify the optimal technologies required to land a 20-50 MT Exploration-class mission on 
Mars. It has been shown that it is not possible to safely land these large systems using heritage Mars EDL systems, 
or analogous Earth or Moon EDL systems. In 2007, NASA conducted a Mars Exploration Architecture1 which 
included an in depth review of the science motivations and engineering technology requirements for a human Mars 
mission campaign.  This study resulted in an update to the Mars Design Reference Architecture (DRA 5.0). Among 
the primary findings and recommendations was the conclusion that landing large payloads (greater than 1 MT) on 
the surface of Mars remains a key architectural challenge. Additionally, research and system studies of fundamental 
EDL technologies were highly recommended.   

The EDL-SA project identified the candidate technologies and assembled them into full aerocapture and EDL 
sequences so that simulations could be developed to evaluate them.  The chosen architectures, shown in Figure 1, 
combine the various technologies of interest in nine different ways. For aerocapture, three scenarios were 
considered. The first is a rigid mid-L/D aeroshell, which is represented in architectures 1, 4, 5, and 7. This scenario 
calls for a vehicle that flies at a 55-degree angle of attack, resulting in ballistic coefficient and L/D values of 490 
kg/m2 and 0.43, respectively. The second is a small-scale lifting hypersonic inflatable aerodynamic decelerator 
(HIAD), which is represented in architectures 2, 6, and 8. This scenario requires the vehicle to fly at a 22.2-degree 
angle of attack, which correlates to an L/D of 0.3 and was sized to provide a ballistic coefficient of 165 kg/m2.  
Architecture 9, which was added later in the study, utilizes separate HIADs for both the aerocapture and EDL phases 
allowing the ballistic coefficient and L/D of the aerocapture HIAD to be tailored to meet the specific needs of that 
phase. This resulted in a much larger HIAD design sized to meet peak heat rate and diameter constraints, which 
resulted in an L/D and ballistic number of 0.2 and 33.33 kg/m2, respectively. Architecture 3 is an all-propulsive 
sequence, and is not considered in this study. This narrows the number of aerocapture architectures down to 3: rigid 
mid-L/D aeroshell, small HIAD, and large HIAD.  

 

 
 

Figure 1.  EDL-SA Architectures Diagram 
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For each configuration, Monte Carlo performance and sensitivity analysis were completed using the POST2 

simulation at LaRC. This simulation uses the Hybrid Predictor Corrector Aerocapture Scheme (HYPAS) guidance 
algorithm to simulate the aerocapture phase. 

 

II. The Aerocapture Maneuver 
 
The purpose of aerocapture is to slow the vehicle from a hyperbolic velocity relative to the planet into an 

elliptical orbit around the desired landing body, prior to EDL. Figure 2 shows the aerocapture trajectory and 
highlights major events during the maneuver. The simulation used in this study utilizes the Hybrid Predictor 
Corrector Aerocapture Scheme (HYPAS)2 guidance algorithm to simulate the bank modulation portion of the 
aerocapture phases.  As shown in the figure, the vehicle enters the atmosphere (2) from a hyperbolic approach 
trajectory and begins bank angle modulation at a specific g-load trigger defined in the simulation. This marks the 
beginning of the first of the two aerocapture phases, the equilibrium glide phase. During this phase, the vehicle 
passes through orbit periapsis, and then transitions to the second phase, the exit phase, at a velocity trigger 
established in the simulation. Once the vehicle reaches another defined sense acceleration limit, bank angle 
modulation ceases, and the vehicle exits the atmospheres and coasts to the targeted orbit apoapsis. At the orbit 
apoapsis, a periapsis raise maneuver (9) is performed to raise the periapsis out of the atmosphere and avoid surface 
impact, and the vehicle coasts to its new orbit apoapsis. Here, a final orbit adjust maneuver (10) is performed to 
cleanup any errors associated with targeting during the aerocapture maneuver, and brings the vehicle into its desired 
post-aerocapture target orbit. Following a period of time in orbit, a de-orbit burn is performed in order to establish 
the desired atmospheric interface to initiate the EDL phase, which culminates with touchdown on the Martian 
surface. 

 

  
Figure 2.  Aerocapture Phases 

 

III. Aerocapture Simulation 
 

The simulation used to evaluate the EDL-SA architectures is the Program to Optimize Simulated Trajectories 
(POST2)3, which is a generalized point mass, discrete parameter targeting and optimization simulation.  POST2 has 
the capability to target and optimize multiple vehicles near a rotating oblate planet and has extensive heritage for 
simulating ascent, descent, and orbiting trajectories including past missions like Shuttle,  Stardust, Genesis, and 
Mars Missions such as Pathfinder, Odyssey Orbiter, Exploration Rovers, Reconnaissance Orbiter, and the Phoenix 
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Lander. POST2 is also used extensively in current missions like Mars Science Laboratory, Launch Abort Systems 
and Ares. 

Specific models used to tailor production POST2 for the EDL-SA purposes include use of the Mars Global 
Reference Atmosphere Model 2005 (MarsGRAM 2005), a standard accepted throughout the field.  The entry date 
was arbitrarily chosen to be November 3, 2010 (a MSL derivative), and the atmosphere entry altitude is 
approximately 125 km. The planet model included a gravitational constant equal to 4.2828376383e13 kg*m2/s2 with 
a mean equatorial radius equal to 3396190 m, a mean polar radius of 3376200 m and a planet rotation rate of 
7.088218e-5 rad/sec.  The gravity model included a JPL Mars 85x85 model truncated at 20x20, and the terrain 
model used 1/32nd deg Mars Orbiter Laser Altimeter (MOLA) data. Other EDL-SA simulation specific models 
include aerodynamic and aerothermodynamic models for the HIAD and rigid mid-L/D aeroshell, and mass 
properties derived from response surface equations for HIAD and rigid mid-L/D aeroshell. In addition EDL-SA 
assumes that the trajectories have perfect Navigation knowledge. 

The purpose of the first year of the EDL SA was to examine alternative architectures that would provide the 
aerocapture phase required by DRA5 for the cargo delivery vehicles. The approach velocity and target orbit were 
provided by DRA5, and to summarize, the hyperbolic approach velocity was set at 7.36 km/s and the target orbit 
was defined as 1Sol (33793km x 250 km). It was assumed for all the architectures that a reaction control system 
(RCS) would be the primary control, and to emulate the characteristics of a RCS without having to design a control 
system, a “pseudo-controller” was used where the bank acceleration, maximum bank rate, and bank direction are 
modeled.  

 

IV. HYPAS Guidance 
 

The HYPAS aerocapture guidance algorithm4, developed at JSC, guides a lifting vehicle through the atmosphere 
to a desired exit orbit apoapsis and inclination using bank angle control.  The guidance uses an analytically derived 
control algorithm based on deceleration due to drag and altitude rate error feedback, where inputs to the guidance 
algorithm are the current vehicle position, velocity, sensed acceleration, and body attitude.  The algorithm outputs a 
commanded bank angle. The guidance algorithm is adaptable to a wide range of initial state vectors, vehicle lift-to-
drag ratios and ballistic coefficients, planetary atmospheres, and target apoapsis and inclinations, by only changing a 
set of initialization constants.  Furthermore, by tuning these constants5, other trajectory constraints can be controlled 
such as maximum dynamic pressure, deceleration, heat rate, and the amount of the theoretical corridor captured. 

A significant feature of the HYPAS algorithm is that no reference trajectories are computed prior to flight. All 
references are computed and updated during flight, and this analytic, “on-the-fly” approach leads to efficient code, 
minimal data storage requirements, and minimal preflight effort.  The non-numerical, non-iterative scheme ensures 
fast and consistent execution times. 

The original version of the HYPAS algorithm was developed for the Aeroassist Flight Experiment (AFE) 
program. During the AFE program, the algorithm was tested, compared, and evaluated against other guidance 
algorithms in three and six degree-of-freedom computer-based simulations.  The HYPAS guidance algorithm was 
selected for the space flight test, and development of the flight code was on schedule until the AFE program was 
cancelled.  Since the AFE program, the HYPAS algorithm has been used in numerous human and robotic 
exploration mission studies, and these studies involved developing nominal and dispersed trajectory simulation 
results for aerocapture at Earth, Mars, Titan and Neptune for a wide range of vehicle L/D, ballistic coefficients, 
entry conditions, and target orbits.  HYPAS was also in the evaluation phase for the NASA/CNES 2005 Mars 
Sample Return Mission6, which included an aerocapture orbiter at Mars.  This work has provided the opportunity to 
gain a deep understanding of how the guidance algorithm performs in a variety of situations, and modifications have 
been made as necessary to improve performance and robustness. 

The HYPAS guidance algorithm consists of two phases.  In the first phase, or capture phase, bank angle 
commands are generated to stabilize the trajectory and drive the vehicle toward equilibrium glide conditions, where 
lift, gravity, and centripetal forces are balanced.  When the vehicle decelerates to a specified velocity, the second 
phase, or exit phase, begins.  In the exit phase, the velocity vector at atmospheric exit altitude is analytically 
predicted each guidance computation cycle.  Bank angle commands are then generated so that the velocity achieved 
at exit altitude will produce an orbit with the target apoapsis.  This two-phase approach allows separate tuning of 
initialization constants to maximize robustness during capture and maximize performance during exit.  
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Additionally, because bank modulation is used to control both drag and inclination angle, a natural division is 
created in the logic between in-plane or longitudinal control, and out-of-plane or lateral control. The longitudinal 
control commands the vehicle to a specific bank angle magnitude, thereby controlling the amount of vertical in-
plane lift. The lateral control commands the sign of the bank angle, which controls the direction of the out-of-plane 
lift, in order to maintain the desired orbit inclination within a deadband by performing roll reversals.  

The longitudinal control is tasked with ensuring the vehicle exits the atmosphere with the velocity and flight path 
angle required to meet to the desired target orbit apoapsis. Target apoapsis is achieved by controlling the vertical 
component of the lift vector through bank angle commands.  The guidance algorithm follows a reference altitude 
rate and drag profile, generating bank angle commands using the control equation 

 
 (1) 

where Φcmd is the commanded bank angle,  is the altitude rate,  is the dynamic pressure, D is the 
deceleration due to drag, and Φeq.gl. is the bank angle required for equilibrium glide.  and Gd are gains selected to 
provide the desired natural frequency and damping ratio response to a second order differential equation in altitude.  
Their values can be adjusted to maximize performance or robustness.  

During the capture phase, when equilibrium glide is targeted, the reference altitude rate, , is zero, and the 
reference drag is computed each time step by 

 
 (2) 

where VI is current inertial velocity, R is current radius vector magnitude, g is acceleration due to gravity, CL and 
CD are lift and drag coefficients, and K is a factor to determine how much of the lift vector should be used to 
maintain equilibrium glide.  The guidance will attempt to ensure the vehicle will not skip out by balancing the 
vertical forces. Selection of the gains controls the point in the entry in which equilibrium glide is established, 
thereby controlling heat rate and g-loads. 

During the exit phase of the guidance, a constant reference altitude rate is computed so that the velocity at 
atmospheric exit will provide the desired target apoapsis altitude.  This reference altitude rate is updated each 
guidance cycle based on the difference between the predicted and desired exit velocity.  The equation for updating 
the reference altitude rate is 

 
 (3) 

where Vmiss is the difference between the predicted velocity at exit and the velocity required at exit to achieve the 
apoapsis target with given reference altitude rate.  The predicted exit velocity is computed from an analytic equation 
that assumes an exponential atmosphere and constant radial velocity to atmosphere exit for estimating velocity loss 
due to drag.  The desired exit velocity is simply computed from orbital mechanics equations. 

The guidance algorithm requires an estimate of the current atmospheric density, which is derived from the 
measured deceleration due to drag assuming a nominal ballistic coefficient using 

 
 (4) 

where Vr is the current relative velocity, and Dmes is the sensed deceleration due to drag.  The guidance algorithm 
models the atmosphere density as a simple exponential law of altitude 

  (5) 

where r0, and h0, are the reference density and altitude, and hs is the scale height.  A density scale multiplier Kρ is 
defined as the ratio of the density expected from the exponential model and the measured density.  A first order low-
pass filter of the form 

h q

hG 

refh



 
 

American Institute of Aeronautics and Astronautics 
 
 

6 

  (6) 

is used to smooth high-frequency atmosphere disturbances and control the guidance response rate to density 
changes.  Then, the estimate of the atmosphere density is computed by 

  (7) 

Note that with this approach, the guidance algorithm automatically compensates for dispersions in both 
atmospheric density and vehicle drag coefficient. 

The lateral control is tasked with achieving the target orbit inclination by performing periodic bank reversals. 
The logic in the guidance algorithm uses an inclination or wedge angle dead band that is a function of inertial 
velocity.  Whenever the inclination or wedge angle error exceeds this dead band, a roll reversal is commanded.  The 
direction to bank is selected through a series of tests that examine current velocity, angular distance to roll, and 
difference between reference and navigated altitude rate. 

V. Results 
 

1. Aerocapture Flight Path Corridor Sizing 
 
Initially, the theoretical lift up-lift down profile was flown, in place of HYPAS, to gain an understanding of the 

expected performance for the three aeroshell designs. Performance can be evaluated based on the available skip-out 
margin which is defined as the difference between the flight path angle flown for an individual case and the flight 
path angle that causes skip-out.  Logically, the more skip-out margin the better the performance observed in the 
Monte Carlo analysis. Figure 3 shows the skip-out margin for a range of ballistic numbers and L/D values. The 
flight path angle is chosen such that the maximum g-load is 4-earth g’s. The figure also highlights the three aeroshell 
designs studied in this analysis according to each design’s L/D and ballistic number combination and shows the 
amount of skip-out margin available for each design. Analysis has shown that a minimum skip-out margin of 1 
degree is required for good performance (i.e. no cases lost to skip-out) in the Monte Carlo runs. The 23 meter 
diameter inflatable aeroshell has 1.25 degrees, the 55 meter diameter inflatable aeroshell has roughly 0.9 degrees, 
and the rigid mid-L/D aeroshell has approximately 1.6 degrees. Therefore, good performance is expected from 
Monte Carlo analysis for both the 23m HIAD and rigid mid-L/D aeroshell, however, not for the 55 meter HIAD.   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 3.  Available Skip-out Margin for Variations of L/D and Ballistic Number 
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2. Nominal Trajectory Results 
 
Reference trajectories were developed for the three different aeroshells using a 1 sol (33793 km x 250 km) post-

aerocapture target orbit, and for each of these references, the HYPAS analytical closed-loop guidance algorithm was 
used to generate the trajectories. For each aeroshell design, the flight path angle at entry interface was chosen to 
meet the desired peak g-load of 3 earth-g’s for each case.  

Figure 4 compares the altitude profiles for each of the three configurations studied, and shows that the minimum 
altitude decreases as the ballistic number increases. The 55 m HIAD has the lowest ballistic number, and reaches a 
minimum altitude just below 50 km. Conversely, the rigid mid-L/D aeroshell is the highest ballistic number and 
reaches a minimum altitude of slightly higher than 30 km.   

Figures 5 and 6 show an example of the key trajectory guidance parameters using the 23 m HIAD nominal 
trajectory. These parameters include bank, drag acceleration, and altitude rate. The bank profile, which the guidance 
algorithm commands in order to fly the drag acceleration and altitude rate reference profiles, shows good 
performance in that the bank is consistently being modulated and does not saturate the guidance by holding full lift 
up (0 degrees) or full lift down (180 degrees) during the guided portion of the maneuver. Additionally, the drag 
acceleration and altitude rate profiles follow their reference profiles as expected. The drag acceleration is trying to 
pull the vehicle deeper into the atmosphere in order to avoid skip-out, whereas the altitude rate is attempting to 
maintain the equilibrium glide condition of constantly increasing altitude.  However, the actual trajectory does not 
match the reference profiles exactly, as each profile is attempting to achieve competing objectives. Similar nominal 
trajectory data was generated for the 55 m HIAD and rigid mid-L/D aeroshell cases.  

 

 
 

Figure 4. Altitude Profiles for All Configurations 
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Figure 5. Nominal Bank Profiles for the 23 m HIAD 
 

 
 

Figure 6. Nominal Drag Acceleration and Attitude Rate Profile for 23 m HIAD  
 

 
3. Monte Carlo Results 

 
Sets of 2000 case Monte Carlo runs were completed for each of the three reference profiles, and the HYPAS 

gains were optimized for ∆V performance within each set. The applied dispersions7 are listed in Table 1. 
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Table 1. Aerocapture Monte Carlo Dispersion Values 
 

Dispersion Value 

Aero +/- 10% (normal, 3σ) 
Alpha +/- 5% (normal, 3σ) 
Entry Flight Path Angle (EFPA) +/- 0.35° (normal, 3σ) 
Dust Tau 0.1:0.9 + random density perturbations 
Mass +/- 5% (normal, 3σ) 

 
 
Figures 7 through Figure 1 display key Monte Carlo results for each of the three aeroshell designs considered in this 
study. The figures are shown in order of decreasing ballistic number and L/D, with the rigid mid-L/D aeroshell 
having the highest combination of the two, and the 55m HIAD having the lowest. With the exception of one 
extraneous high point in the rigid mid L/D Monte Carlo results, it is observed that as ballistic number and L/D 
decreases, the range of apoapse altitude reached and the amount of ∆V required to perform the post aerocapture 
clean up burn increases. There is a direct correlation between the size of the apoapse altitude target miss distance 
and the amount of ∆V required to clean up that miss. The larger the miss distance, the larger the clean up burn must 
be to put the vehicle into the target 1 sol orbit.  

 
 

Figure 7. Monte Carlo Results for the Rigid Mid-L/D aeroshell 
 

 
Figure 8.  Monte Carlo Results for the 23 m HIAD, L/D = 0.3  
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Figure 1.  Monte Carlo Results for the 55 m HIAD, L/D = 0.2 
 
The single high apoapse altitude of 58,400 km observed in the rigid mid-L/D aeroshell results in Figure 7 is 

attributed to poor tuning in the guidance gains.  With improved guidance tuning, the maximum ∆V value for that 
design could be brought below the maximum ∆V observed in the 23m HIAD and 55m HIAD cases, as both the 23m 
HIAD and 55m HIAD cases are well tuned, and the performance observed is ideal. 

The increasing trend in larger apoapse altitude misses and higher associated ∆V values from the rigid mid-L/D 
aeroshell to the 55m HIAD can be attributed to a decrease in L/D value. As stated previously, the larger the apoapse 
altitude miss, the larger the clean-up burn required to correct the miss. The lower the L/D, the less lift the vehicle is 
able to command throughout the guided portion, which increases the difficulty the guidance has in achieving the 
target altitude rate profile. This, coupled with the worst of the Monte Carlo dispersions, creates individual cases in 
which the guidance, commanding the maximum amount of lift, is still unable to meet the altitude rate targets and 
exits the atmosphere with a large apoapsis altitude error. Though less than ideal performance is observed in Figure 1 
for the L/D=0.2 case, the required ∆V is still below the budgeted 150 m/s, therefore, the performance is deemed 
acceptable. 
 
4. Sensitivities 

 
After evaluating the performance of each of the three vehicle designs in the Monte Carlo analysis, several 

sensitivity studies were also performed to evaluate the effect of additional parameter changes on the post 
aerocapture clean up ∆V. Nominal trajectories were simulated with parametrically varied atmosphere inputs such as 
season, dust opacity, and time of day over the full or expected range, as well as the initial mass and target orbit. Gain 
scaling (but not tuning) was performed for the mass sensitivity cases, and no gain changes were made for the 
atmosphere sensitivities. An examination of the results of atmosphere and mass sensitivities resulted in no 
significant variation (less than 8 m/s) or trends in variation of ∆V primarily because of vehicle velocity and the fact 
that the guidance is capable of flying out the variations.  That was not the case for the sensitivity study that 
considered various target orbits. 
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The choice of target orbit, or post aerocapture apoapsis altitude (ranging from 33,793 km to 500 km) was 
determined to have a significant effect on the ∆V required for the post-aerocapture cleanup maneuver. Figure 10 
shows the cleanup ∆V that results from the sensitivity that compared the aerocapture of a 23m HIAD vehicle into 
both a 1 sol and 500 km circular post-aerocapture target orbit. A significant difference in mean ∆V, roughly 100 
m/s, is observed, showing that while the vehicle may not be sensitive to variations in mass or atmosphere inputs, it is 
highly sensitive to changes in the post-aerocapture target orbit. 

 
Figure 10.  Delta V Sensitivity to Post-Aerocapture Orbit 

 
5. Breakpoint Study Trade 

 
Initially, the study called for the analysis of only two vehicle designs, the small 23 m HIAD and the rigid mid-

L/D aeroshell. The 23m HIAD design sees a high enough heat rate such that  an ablative TPS is required. An 
additional study was undertaken to determine the HIAD size at which the heat rate would go below 50 W/cm2, 
which is a low enough heat rate such that an insulating TPS could potentially be used. Additionally, it was desired to 
understand at how low an L/D it would become difficult to perform an aerocapture.  

The range of L/D and ballistic numbers considered for the study were 0.1 to 0.3 and 25 to 50 kg/m2, respectively. 
Sixteen specific combinations of L/D and ballistic numbers were created from these ranges and considered for a 
scaled HIAD aeroshell configuration that aerocaptured into a 1sol orbit. Results show that performance is highly 
sensitive to L/D, and that poor performance is observed for L/D’s less than 0.25.  

Revisiting the concept of skip-out margin and understanding the amount available for each combination 
provided insight into aerocapture performance that would be observed in the Monte Carlo analysis. Figure 11 shows 
the skip-out margin available for the 16 combinations considered, and the figure shows that for L/D values less than 
0.25, the amount of skip-out margin is less than the previously discussed one-degree required to obtain sufficient 
performance. 
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Figure 11. Available Skip-out Margin for Low Combinations of L/D and Ballistic Number 
 

Using well tuned guidance gains for one high L/D and ballistic number combination, the gains were scaled down, 
but not individually tuned, and 2000 case Monte Carlo simulations were performed for each of the sixteen 
combinations. Figure 12 shows the post aerocapture ∆V range required to target a 1 sol orbit for each of the 
combinations, relative to the 150 m/s of budgeted ∆V. 
 
 

 
 

Figure 12. ∆V Monte Carlo Results 
 
The key parameter to note is the maximum ∆V value required to clean up large apoapsis miss distance for each 

value of L/D. Validating known poor performance at low skip out margins, the L/D=0.15 data has several cases that 
require more than 700 m/s of clean up ∆V, significantly exceeding the budgeted amount of 150 m/s. Even for an 
L/D=0.2, 300 m/s of ∆V is required, exceeding the budgeted amount, while the cases with L/D=0.25 and L/D=0.3 
show acceptable performance by remaining below budget. Therefore, the “break point” of the simulation would be 
L/D values of 0.20 and lower, which show unacceptable performance in terms of ∆V. 
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In terms of selecting a suitable ballistic number, Figure 13 shows the relationship between the Monte Carlo 3-σ 
peak heat rate values and HIAD diameter. Each line represents a different value of L/D, which is shown to have a 
relatively small effect on the peak heat rate. The data also shows that the choice of HIAD diameter (or the effect of 
ballistic coefficient) has a significant effect on the peak heat rate.  

Initial mass and aerodynamic models limited the HIAD diameter to 50 m, and the breakpoint study considered 
that holding to a 3-σ peak heat rate of less than 50 W/cm2 in the Monte Carlo analysis would enable use of the same 
models by maintaining diameters below 50 m.  Based on results shown in Figure 13, it is clear that no combination 
of ballistic number and L/D considered for the break point study is sufficient to meet both the 50 W/cm2 peak heat 
rate and 50m diameter constraints. Meeting the heating constraint was considered more important than meeting the 
diameter constraint; therefore, the HIAD diameter was allowed to increase to 55 m, which corresponds to a ballistic 
number of 33.33 kg/m2. Consequently, only a ballistic number of 33.33 kg/m2 and 41.67 kg/m2, which is the next 
closest to meeting both the HIAD and peak heat rate constraints, can be considered viable options for this design. 
 

 
 

Figure 13. Plot of 3 sigma peak heat rate versus diameter for lines of constant L/D 
 

The previous data includes dispersed results for a scaled, but un-tuned set of guidance gains.  The next step in 
characterizing the breakpoint was to choose a breakpoint set of cases for which to tune gains to examine 
improvements in performance. Gain tuning is a labor intensive process, so only 4 of the 16 cases were selected for 
tuning. From the analysis displayed in Figures 12 and 13, it appears that L/D is the driver in meeting ∆V 
requirements, and ballistic number in meeting peak heat rate and diameter requirements. Therefore, the two L/D 
(0.15 and 0.20) and ballistic number (33.33 kg/m2 and 41.67 kg/m2) breakpoints determined from Figures 12 and 13 
were combined to form the four combinations to be optimized using guidance gain tuning.  

An additional change implemented at this time was a reduction of the entry flight path angle dispersion to 0.25 
deg. The Mars Approach Navigation community felt that the previous value of 0.35 deg was overly conservative, 
and that a reduction to 0.25 deg is more appropriate while still being sufficiently conservative.   The results of this 
modification for the optimized L/D = 0.2, ballistic number of 33.33 kg/m2 (or 55 m diameter) case are shown in 
Figure 2. The effect of reducing the flight path angle dispersion and optimizing the guidance tuning resulted in a 
maximum ∆V below the budgeted 150 m/s, deeming this combination to have acceptable performance. One stray 
case, highlighted in red, can be attributed to imperfect tuning of the guidance gains.  

L/D=0.15 cases (not shown) still remained almost 400 m/s over the budget, therefore, L/D=0.2 was determined 
to be the breakpoint in L/D. The final ballistic number breakpoint was selected as 33.33 kg/m2, which corresponds to 
the 55 m HIAD. In summary, the breakpoint of the aerocapture simulation using the HYPAS guidance algorithm 
was determined to be for cases below an L/D of 0.2 and ballistic number of 33.33, and this combination was carried 
through in the design of the large 55m HIAD. 
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Figure 2. Effect of Flight Path Angle Dispersions for L/D=0.2, Bn=33.33 kg/m2 

 

VI. Conclusion 
In summary, three aeroshell concepts designed for high-mass payloads were analyzed in the POST2 simulation 

to understand the performance of the aerocapture guidance. The three concepts were created from two of the 
candidate technologies identified by the Mars Entry Descent and Landing System Analysis project, and are the rigid 
mid-L/D aeroshell and the hypersonic inflatable aerodynamic decelerator. For each aeroshell design, a nominal 
trajectory was developed and Monte Carlo analysis was performed from those nominal trajectories to determine if 
any of the three designs exceeded performance requirements. In this analysis, minimum performance requirements 
dictate that each of the three designs should consume no more than 150 m/s of ∆V during the aerocapture maneuver. 

In each of the three concepts, no single aeroshell design required more than 150 m/s of ∆V, therefore each of the 
three designs is considered a viable option for landing high-mass payloads. It was observed, however, that the 
sensitivity to Monte Carlo dispersions increased as the L/D of the vehicle decreased, showing a larger miss in the 
target orbit apoapsis and a corresponding larger clean-up ∆V. Additionally, the analysis showed extreme sensitivity 
to a change in post-aerocapture target orbit. Both of these aspects should be considered in future aeroshell and 
aerocapture mission design.  
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